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ABSTRACT 
A convex body is said to have constant diagonal if and only if the main 
diagonal of the circumscribed boxes has constant length. It is shown that 
an n-dimensional convex body, n ~ 3, is the affine image of a body of constant 
breadth if and only if it has constant diagonal. Affine images of bodies of 
constant breadth are also characterized by the property that the orthogonal 
projection on each hyl~rplane is the affine image of a body of constant 
breadth in that hyperplane. 

A convex body in n-dimensional Euclidean space E. is a compact, convex 
subset with non-empty interior. A convex body has "constant breadth" if the 
distance between parallel supporting hyperplanes is constant. A set K'  is the 
"affine image" of K if there exists an affine transformation f:  E, -* En such that 
f (K)  = K'. A rectangular parallelopiped will be referred to as a "box".  A convex 
body has "constant diagonal" if the main diagonal of the circumscribed boxes has 
constant length. 

In this paper we are concerned with characterizing affine images of bodies of 
constant breadth, a problem raised by S.K. Stein. Our main theorem is, 

THEOREM 1. In E,, n >= 3, a convex body is the affine image of a body of 
constant breadth if and only if K has constant diagonal. 

We shall also prove a related theorem, 

THEOREM 2. In E,, n > 3, a convex body is the affine image of a body of 
constant breadth if and only if its orthogonal projection on each hyperplane is 
the affine image of a body of constant breadth in that hyperplane. 

The proofs of these theorems depend on the following lemmas. 

LEMMA 1. In E~, n >= 2, a convex body is the affine image of a body of cons- 
tant breadth if and only if K + ( -  K) is an ellipsoid. 

Proof. This follows immediately from the observation that K is a body of 
constant breadth if and only if K + ( - K) is spherical. 
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LEMMA 2. In E,, n > 3 a convex body is an ellipsoid if and only if its 
orthogonal projection on, each hyperplane is an ellipsoid in that hyper- 
plane. 

Proof. If  K is an ellipsoid, then all its orthogonal projections are ellipsoids. 
The following proof  of the converse is an adaptation of  the proof  given by Siiss 
[3] for the case of  E3. Now suppose each orthogonal projection of K is an ellipsoid. 
Then each supporting hyperplane of K intersects K in just one point. Denoting 
the points of E,  by x = (xl,  ".-, x,), assume that the segment joining a = (0, ..-, 0,1) 
to a '  = (0, . . . ,0,  - 1) is a maximum diameter of  K. Then the hyperplanes x, = 1 

and x, = - 1 are supporting hyperplanes of K. Let K* be the orthogonal projection 
of K on the hyperplane xl = 0. Then K* is an ellipsoid in xi  = 0. aa' is one 
axis of  K*, since the intersections of x, = 1 and x, = - 1 with xl = 0 are sup- 

porting (n - 2)-planes of  K*, orthogonal to aa' and passing through a and a '  
respectively. Let H be a supporting hyperplane of K which is orthogonal to xa = 0. 

Then H intersects x~ = 0 in H*, where H* is a supporting (n - 2)-plane of K*. 
If, in particular, H is also chosen parallel to aa', then H* is parallel to aa', and 
hence H* n K* lies in x, = 0. It  follows that H n K lies in x, = 0. But this argument 
could have been applied to any supporting hyperplane parallel to aa'; hence, 
any supporting hyperplane parallel to aa' intersects K in a point lying in x, = 0. 
From this it follows that the intersection of  K with x, = 0 is identical with its 
orthogonal projection on x, = 0, which is an ellipsoid K**. It is easy to show 
that K** must be centered at the origin. Now let f :  E. ~ E, be an affinity which 
keeps aa' fixed and maps K** onto a sphere S in x, = 0 centered at the origin. 
Then f (K )  intersects x, = 0 in the sphere S. Each diameter of  S is orthogonal to 
the supporting hyperplanes o f f (K)  through its endpoints.Also, x, = 1 and x, = - 1 
are supporting hyperplanes o f f (K) ,  orthogonal to aa' and passing through a and 
a '  respectively. Finally, all the orthogonal projections of  f (K )  are ellipsoids 
(here one needs to use the fact that not only the orthogonal projections, but all 
projections, of  K are ellipsoids). In the argument above, the only property of  aa' 
we actually used was that the supporting hyperplanes through a and a '  were 
orthogonal to aa'. From this it followed that the hyperplane through the origin 
orthogonal to aa' intersected K in an ellipsoid. Thus if bb' is any diameter of  S, 

the same arguments can be applied to show that the hyperplane through the 

origin orthogonal to bb' intersects f (K )  in an ellipsoid; moreover, this ellipsoid 

has aa' as an axis. It  follows that every 2-plane containing aa' intersects K in an 
ellipse having aa' as one axis and a diameter of  S as the other. Thus 

f ( K )  is an ellipsoid of  revolution, and K is an ellipsoid. This completes 

the proof. 

LEMMA 3. In E,, n > 3, a convex body is an ellipsoid if and only if all its 
circumscribed boxes have their vertices on a fixed sphere. 
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Proof. The sufficiency of  the condition is proved, for n = 3, in [1]. We proceed 
to the general case by induction. Suppose K is a convex body in E~, n > 3, all of 
whose circumscribed boxes have their vertices on a fixed sphere S, and assume 
we know the lemma for Ek, 3 < k < n. Let H be any supporting hyperplane of K, 
and let K* be the orthogonal projection of K on H. Then any box B* in H cir- 
cumscribed about K* is a face of a box B circumscribed about K. The vertices 
of B lie on S; hence, the vertices of B* lie on the sphere S ~ H .  Thus K* is an 
ellipsoid in H. It follows that the orthogonal projection of K on any hyperplane 
is an ellipsoid, so by Lemma 2, K is an ellipsoid. The result follows, for all n, by 
induction. The converse, namely that all circumscribed boxes of an ellipsoid have 
their vertices on a fixed sphere, is a simple matter of analytic geometry. This 

completes the proof. 

Proof of Theorem 1. 1. Let S"- 1 be the unit sphere centered at the origin in E,. 

A "direct ion" in E n is a point u ~ Sn-I .N ow suppose K is the affine image of a 
body of constant breadth, so K + ( - K) is an ellipsoid E centered at the origin. 
Let p(u) be the support function of E measured from the origin, and let b(u) be 
the breadth function (distance between parallel supporting hyperplanes ortho- 

gonal to direction u) of K. Then p(u) = b(u) for all directions u. But if u 1,u2,'",  u, 
are any n mutually orthogonal directions, then )ST=l[p(ui)] 2 is constant, by 
Lemma 3. Hence, ~ ' :  l[b(ui)] 2 is constant, which is precisely the condition that K 
have constant diagonal. Conversely, if K has constant diagonal, then ~,'~:l[b(ui)-I 2 
is constant, so ~7=l[p(ui))] 2 is constant, where p(u) is the support function of 
K + ( - K ) .  Thus all the boxes circumscribed about K + ( -  K) have their 

vertices on a fixed sphere. By Lemma 3, K + ( - K) is an ellipsoid, so K is the 
affine image of a body of  constant breadth. This completes the proof of the 

theorem. 

Proof of Theorem 2. For each direction u let Eu be the hyperplane through 
the origin orthogonal to u. Let K~ be the orthogonal projection of K on Eu. If K 
is the affine image of a body of constant breath, then K + ( - K) is an ellipsoid. 
Hence, [K + ( - K ) ] u - - K ~  + ( -  Ku) is an ellipsoid in E,, so K u is the affine 
image of a body of constant breadth in E~. Conversely, suppose K~ is the affine 
image of a body of constant breadth in E~, for each u. Then [K + ( -  K)]~ 
= K~ + ( - K~) is an ellipsoid in E, for each u. By Lemma 2, K + ( - K) is an 

ellipsoid, so K is the affine image of a body of constant breadth. This completes 

the proof. 

REMARK. An interesting characterization of affine images of curves of constant 
breadth in E 2 is to be desired. While Theorem 1 is true in one direction in the 
plane case, viz. an affine image of a curve of constant breadth has constant diagonal, 

the converse is false. Blaschke, in [2], gives examples of centrally symmetric 



22 G.D. CHAKERIAN 

convex curves with constant diagonal which are not ellipses. Such a curve could 

not be the affine image of a curve of constant breadth, since the only centrally 

symmetric curve of constant breadth is the circle. 
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